

Drone Modeling, Perception and Control Control Systems and Deployment on Hardware

Maitreyee Mordekar, *MathWorks* <u>https://www.linkedin.com/in/mordekarmaitreyee/</u>

Upcoming Webinars

Drone Modeling, Perception and Control using MATLAB and Simulink

Timeline

Sl.no	Webinar Name	Date	Time	
2.	Controls and Deployment to Hardware	Tuesday, 27-Oct-2020	5.00 PM to 6.00 PM	Register Now
3.	Planning Flight States	Tuesday, 3-Nov-2020	5.00 PM to 6.00 PM	Register Now
4.	Perception	Tuesday, 10-Nov-2020	5.00 PM to 6.00 PM	Register Now

During the Webinar

- Requirement:
 - Complete MATLAB Onramp
 - Complete Simulink Onramp
 - See video 1 on Drone Simulation and Control
- ~45 minutes and open to questions
- For more questions:

- Complete MATLAB Onramp
- Complete Simulink Onramp
- See video on Drone Simulation and Control

What we will learn by the end of this session?

Agenda

- Modelling a drone using Simulink
- Walkthrough the Simulink model
- Low level controls of a drone
- Code generation from Simulink model
- Deployment on hardware
- Summary

Recap Modeling a drone

Recap

Modelling a drone using Simulink

- Model of a Parrot Mambo Minidrone
 - Plant

MATLAB and Simulink

Robotics Arena

- Sensors
- Visualization environment
- Design of a controller that hovers a drone

Controlling a drone Manual control

Parameters controlled independently:

- 1. Altitude
- 2. Pitch
- 3. Roll
- 4. Yaw

Assume drone is parallel to the floor

Drone overcomes the gravity force

Increasing thrust -> Increased height

Decreasing thrust -> Decreased height

Modelling a drone

Controlling the altitude

PID controller Proportional

- $u(t) = KPe(t) + KI \int e(t)dt + KD \frac{de(t)}{dt}$ u(t): Thruste(t): Error signal
- $u(t) = K_P e(t)$
 - Thrust proportional to error

 $K_{P} = 0.8$

PID controller Proportional, Integral and Derivative

- $u(t) = KPe(t) + KI \int e(t)dt + KD \frac{de(t)}{dt}$ u(t): Thruste(t): Error signal
- Derivative:
 - Understand the value of the future
 - Slow down for high rate of change
- Integral:
 - Keeps track of past value

$$K_{P} = 0.8$$

 $K_{I} = 0.24$
 $K_{D} = 0.5$

[parrotMinidroneHoverStart]

PID Tuner For linear systems

MATLAB and Simulink Robotics Arena

Hovering at altitude

Assume drone is parallel to the floor

What if there are disturbances? *Problems faced*

- 1. Height decreases (F_{vertical})
 - Need to adjust the height
 - Altitude controller will take care of the height
- 2. Drone not parallel to the floor
 - Need a controller to set roll and pitch to 0
- 3. Horizontal drift to the sides (F_{horizontal})
 - Need to get the drone back to original position

Controlling the drone Problem 2:Drone not parallel to the floor

What if there are disturbances? *Problems faced*

- 1. Height decreases (F_{vertical})
 - Need to adjust the height
 - Altitude controller will take care of the height
- 2. Drone not parallel to the floor
 - Need a controller to set roll and pitch to 0
- 3. Horizontal drift to the sides (F_{horizontal})
 - Need to get the drone back to original position

	F _{vertical}
F _{horizontal}	TT
	and the second

Controlling the drone Problem 3: Horizontal drift to the sides

- Provide X, Y position references
- Use a controller to stay at the required position

Hovering the drone In simulations

Hovering the drone

Installing the hardware support package

Go to 'Add-Ons'

Select 'Get Hardware Support Packages'

Install <u>Simulink Support for Parrot Minidrones.</u>

Deploying code on hardware

- Generate code from Simulink model
- Connect to hardware
- Run the model

Support for Low-Cost Hardware

- Parrot Mambo
- Arduino[®] Uno, Mega
- LEGO[®] MINDSTORMS[®] NXT
- Raspberry Pi
- BeagleBoard
- NVDIA Jetson
- RTL-SDR
- USRP
- ... and many more

MathWorks[®]

Recommendations for Upcoming Webinar

- Complete Video Series on <u>Drone Simulation and Control</u>
- Install <u>Simulink Support for Parrot Minidrones.</u>
 - Try hands-on with us during/after the sessions

#droneseries #Simulink @MATLAB

SELF-PACED COURSE

How to access the Onramps/Tools to try hands-on?

- Check if your institute has Campus Wide License:
 - https://www.mathworks.com/academia/tah-support-program/eligibility.html
- Request for Trial:
 - <u>https://www.mathworks.com/campaigns/products/trials.html</u>
- E-mail us at minidronecompetition@mathworks.com for access to license
 - First Name:
 - Last Name:
 - University/Institute:

What will we learn in the upcoming webinar?

Resources Robotics Arena

Contact us

minidronecompetition@mathworks.com

facebook.com/groups/RoboticsArena/

Student Videos and Tutorials

mathworks.com/academia/student-competitions/tutorials-videos.html

Software offer

mathworks.com/academia/student-competitions

• Racing Lounge blog:

blogs.mathworks.com/racing-lounge

Before Next Lesson!

- Complete <u>Simulink Onramp</u>
 - Tag with #Simulink #droneseries @MATLAB with the certificate on Social Media
- See video series on <u>Drone Simulation and Control</u>

